MATH 54-HINTS TO HOMEWORK 2

PEYAM TABRIZIAN

Here are a couple of hints to Homework 2! Enjoy! :)

Section 1.3: Vector equations

1.3.7. Here's a cool trick! Any vector in \mathbb{R}^{2} is a linear combination of two linearly independent vectors! So the answer is immediately yes
1.3.22. In other words, find an inconsistent system of 3 equations! Think about why this is true!
1.3.25. Careful! A set is not the same as the span of a set. In particular, \mathbf{b} is not in $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, a_{3}\right\}$ because it is not equal to either of those vectors. However, it might be in the span of those 3 vectors! Also, for (c), remember that $\mathbf{a}_{\mathbf{1}}$ is always in the span of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$.

SECTION 1.4: THE MATRIX EQUATION $A x=b$
1.4.17, 1.4.18. Row-reduce! Also, use Theorem $4(d)$ on page 45.
1.4.29. The easiest way to do this is find a matrix in row-echelon form that has this property, and then just interchange two rows! For example, the following matrix works:

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

1.4.34. Ignore the word 'unique'. Then Theorem $4(a)$ holds, and in particular Theorem $4(c)$ holds, which solved the problem!

SECTION 1.5: Solution SETS OF LINEAR SYSTEMS
1.5.14. The line that goes through $\left[\begin{array}{l}0 \\ 8 \\ 2 \\ 0\end{array}\right]$ and with 'slope' $\left[\begin{array}{c}3 \\ 1 \\ -5 \\ 1\end{array}\right]$

Date: Monday, September 5th, 2011.

1.5.24.

(a) \mathbf{F} (nontrivial means not all entries are 0 . For a counterexample, let A be the zero matrix!)
(b) \mathbf{T}
(c) \mathbf{F} (no, it means $\mathbf{b}=\mathbf{0}$)
(d) \mathbf{F} (no, draw a picture, or see page 55)
(e) \mathbf{T} (see page 55)
1.5.29, $1.5 .30,1.5 .31,1.5 .32$. Nontrivial means $\mathbf{x} \neq 0$. The best way to do this is to draw a picture of what the reduced-echelon form of the matrix looks like! Also, for (b), if one of the rows of A is a row of zeros, then the equation $A \mathbf{x}=\mathbf{b}$ has no solution!

SECTION 1.6: Applications of Linear systems

Ignore this section if you want, it's more for your personal entertainment! :)

SECTION 1.7: LINEAR INDEPENDENCE

1.7.9. Notice that $\mathbf{v}_{\mathbf{2}}=-3 \mathbf{v}_{\mathbf{1}}$, so in other words, for what values of h is $\mathbf{v}_{\mathbf{3}}$ a multiple of $\mathbf{v}_{\mathbf{1}}$. For (b), the set is always linearly dependent because $\mathbf{v}_{\mathbf{2}}=-3 \mathbf{v}_{\mathbf{1}}$ already.
1.7.11, 1.7.13. Row-reduce!
1.7.15, 1.7.17. A set with more than 2 elements in \mathbb{R}^{2} is always linearly dependent. A set with the zero-vector is always linearly dependent.

1.7.21.

(a) \mathbf{F} (the equation $A \mathbf{x}=\mathbf{0}$ always has the trivial solution, no matter what the columns of A look like!)
(b) \mathbf{F} (for example, $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]\right\}$ doesn't satisfy this! The correct statement should be: there is some vector such that \cdot.)
(c) \mathbf{T} (in other words, 5 vectors in \mathbb{R}^{4} are linearly dependent)
(d) \mathbf{T} (otherwise the set would be linearly independent)
1.7.22.
(a) \mathbf{T} (end of page 69)
(b) \mathbf{F} (for example, $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]\right\}$ is linearly dependent)
(c) $\mathbf{T}(\mathbf{z}$ is a linear combination of \mathbf{x} and \mathbf{y} !)
(d) \mathbf{F} (for example, $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]\right\}$ is linearly dependent)
1.7.33, 1.7.34. Remember that a set is linearly dependent if there's a relationship between the vectors in the set. Also, a set with the zero vector is always linearly dependent.
1.7.35. False (\mathbf{v}_{1} could be the zero vector!)
1.7.36. False (choose $\mathbf{v}_{\mathbf{1}}=\mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{4}}$ and $\mathbf{v}_{\mathbf{3}}$ linearly independent from $\mathbf{v}_{\mathbf{1}}$! The point is for linear independence, you have to consider the set as a whole!)

SECtion 1.8: Introduction to Linear Transformations

1.8.3, 1.8.9, 1.8.11. Just solve the equation $A \mathbf{x}=\mathbf{b}$, where in 1.8 .9 , \mathbf{b} is the zero vector!

SECTION 1.9: THE MATRIX OF A LINEAR TRANSFORMATION

For all of those questions, all you need to find is $T\left(\mathbf{e}_{\mathbf{1}}\right), T\left(\mathbf{e}_{\mathbf{2}}\right), \cdots$ and group the terms in a matrix!

1.9.23.

(a) \mathbf{T} (in other words, if you know $T\left(\mathbf{e}_{\mathbf{1}}\right), T\left(\mathbf{e}_{\mathbf{2}}\right), \cdots, T\left(\mathbf{e}_{\mathbf{n}}\right)$, you know T)
(b) \mathbf{T} (see example 3)
(c) \mathbf{F} (the composition of two linear transformations is a linear transformation, see chapter 4)
(d) \mathbf{F} (onto means every vector in \mathbb{R}^{n} is in the image of T)
(e) \mathbf{F} (let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$, then the columns of A are linearly independent, and hence T is one-to-one by theorem 12b)

1.9.24.

(a) \mathbf{F}
(b) \mathbf{T}
(c) \mathbf{T}
(d) \mathbf{T}
(e) \mathbf{T}

